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quasicrystals.86 These diverse examples clearly dem- 
onstrate the wide applicability of mathematical meth- 
ods to structure and bonding in inorganic chemistry. 

I am indebted to the U.S. Office of Naval Research for f i -  
nancial support of this work during the period 1984-1988 when 
many of the ideas outlined in this Account were developed. This 
Account is based on the award lecture for the 1991 American 
Chemical Society award in inorganic chemistry sponsored by 
Monsanto Company presented at the 201st National Meeting 
of the American Chemical Society, Spring 1991, in Atlanta, GA. 

substances including solid-state materials. Such ideas 
can relate two-dimensional aromaticity in planar aro- 
matic hydrocarbons such as benzene to three-dimen- 
sional aromaticity in deltahedral boranes such as B,H,& 
(6 I n 5 12). In addition, topological ideas have been 
essential for the development of the chemistry of bare 
gas-phase post-transition-element clusters by suggesting 
key experiments. In the case of infinite solid-state 
structures, ideas derived from topology not only relate 
chemical structure and bonding to superconductivity 
as discussed in this Account but also provide the first 
viable approach to chemical bonding in icosahedral (86) King, R. B. Inorg. Chim. Acta 1991,181, 217. 
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Monte Carlo methods have been widely used in many 
areas of chemical physics.lP2 In recent years they have 
been employed to study various equilibrium and dy- 
namic problems in surface ~cience.~-'~ When Monte 
Carlo methods are used in studying equilibrium phe- 
nomena, many replicas of the system of interest are 
generated according to some sampling algorithm. Al- 
though consideration must be given to finite-size effects, 
rather accurate results may be obtained if a sufficient 
number of replicas of the system are generated. In the 
case of dynamic phenomena, however, an additional 
basic issue must be addressed to ensure that the Monte 
Carlo simulations yield correct results. The corre- 
spondence between each step in a Monte Carlo simu- 
lation and real time must be established. In the section 
Dynamic Monte Carlo Simulations, we review some 
work13J4 in which this correspondence has been studied 
and discuss the dynamical interpretation of Monte 
Carlo simulations. In the section Applications, we re- 
view two applications of dynamic Monte Carlo simu- 
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lations, one concerning surface diffusion and the other 
concerning the compensation effect in surface reactions. 
In the first application the importance of the appro- 
priate choice of transition probabilities is demonstrated. 
In the second application we show how Monte Carlo 
simulations can provide useful results for a reacting 
lattice-gas system. 

Dynamic Monte Carlo Simulations 
We begin this section by describing a simple algor- 

ithm for a dynamic Monte Carlo simulation of the 
surface diffusion of atoms or molecules adsorbed on a 
crystal surface. In this algorithm for surface diffusion, 
particles (atoms or molecules) hop from one site to 
another on a lattice which has a coordination number 
dictated by the symmetry of the crystal surface. The 
lattice is initially populated randomly at some specified 
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fractional coverage. This random occupation of the 
lattice sites corresponds either to a configuration of 
adsorbed molecules at  a sufficiently high surface tem- 
perature that the lateral interaction energies are much 
smaller than kBT, or to a configuration of molecules 
adsorbed randomly on a surface a t  such a low tem- 
perature that no surface diffusion occurs. 

The lattice-gas configuration is updated as follows. 
A particle is chosen at  random, and then one of the z 
nearest-neighbor sites is chosen randomly. If this latter 
site is occupied by another lattice-gas particle, the at- 
tempted hop is not successful, and the procedure is 
repeated. If, however, the site is vacant, the particle 
hops into it from its original site with a probability 
w(ci,cf), where ci and cf denote the initial and final 
configurations of the lattice gas. Generally, the prob- 
ability of hopping w(q,cf) of an adsorbed molecule de- 
pends upon its neighbors because of lateral interactions. 
For each attempted hop, time is incremented by one 
Monte Carlo step. This corresponds to some unit of real 
time, T / N ,  where N is the total number of lattice-gas 
particles; and each particle is excited once by the heat 
bath in each time interval T .  This procedure is reiter- 
ated. 

We have described above how a Monte Carlo simu- 
lation for surface diffusion may be performed. Exten- 
sion of the algorithm to include desorption, adsorption, 
or reaction is simple. Each of these microscopic pro- 
cesses can be treated in an analogous manner as for 
surface diffusion. In the case of desorption, for exam- 
ple, a particle that is picked has a probability of de- 
sorption given by w(q,cf), where q and cf in this case 
denote the configuration of the lattice with the chosen 
particle in its original site and the configuration of the 
lattice with the chosen particle desorbed into the gas 
phase, respectively. Thus, in general, the lattice-gas 
configuration in a simulation can change as a result of 
a particle hopping from one site to a neighboring site, 
a particle desorbing into the gas phase, a particle ad- 
sorbing from the gas phase into a vacant site, or two 
particles reacting and desorbing into the gas phase. It 
should be apparent that the efficiency of such algor- 
ithms is rather strongly dependent upon the transition 
probabilities w(& for the various microscopic events. 
If these transition probabilities are small, there will be 
many attempts at  a transition for each successful 
change in the lattice-gas configuration. In the case of 
surface diffusion, for instance, many unsuccessful at- 
tempts at  hopping will occur for each successful hop. 
This is clearly not a desirable situation. 

Fortunately, Monte Carlo simulations that avoid this 
problem can be im~1emented.l~ Rather than particles 
being picked at random, as in the above algorithm, a 
list of the possible hops for the current lattice-gas 
configuration is constructed. Corresponding to each of 
these possible hops is a probability of success. The hop 
which actually occurs is chosen according to its proba- 
bility of success, and the confiiation is updated. This 
approach ensures that each iteration of the simulation 
results in a change in the configuration. Two features 
of this approach should be noted. 

First, a list of all possible events must be made, and 
this list must be updated after each event. Depending 
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upon the system, this list can be rather long. Therefore, 
in implementation of a Monte Carlo simulation, this 
fact should be taken into consideration. If events occur 
rapidly, that is, with large transition probabilities w- 
(ci,cf), then it is advantageous to simulate the system 
as described earlier. Since the configuration of the 
system will evolve toward lower energy, the transition 
probabilities will generally decrease during the course 
of a simulation. Hence, it might be advantageous to 
combine the two algorithmic approaches described 
above such that initially, when the transition proba- 
bilities w(ci,cf) are high, the first approach is used, and 
later, when the configurational changes slow down, the 
second approach is brought into play. 

Second, because the events that actually occur are 
chosen according to their probability of success, each 
Monte Carlo step does not correspond to a constant 
time increment, in contrast to the first algorithm that 
was described. Each Monte Carlo step corresponds to 
a time increment which must be computed by an ap- 
propriate weighting of all the events that could possibly 
occur at  that step. The procedure to determine the 
correct time increment has been previously established 
using the theory of the Poisson process.14 Here, we shall 
derive equivalent results from a slight different point 
of view and, specifically, for nonstationary processes. 

Consider an ensemble of no configurations for which 
the average rate of occurrence of a transition is equal 
to r. Then the number n of configurations in the en- 
semble in which a transition has not occurred after time 
t is given by no exp (-rt). Therefore, the number of 
configurations dn for which a transition occurs in the 
interval of time from t to t + dt is equal to r o  exp (-rt) 
dt. From this distribution of waiting times, the average 
waiting time for a transition is given by no-lJ;trno exp 
(-rt) dt, which is equal to r-l. Hence, the time incre- 
ment At between events can easily be related to the rate 
of occurrence of transitions, which can, in turn, be 
calculated from the microscopic transition probabilities, 
i.e., At  = r-' = ((w(q,cf)/~))-'. Here, ( (  > >  indicates that 
the average is taken over all final configurations cf for 
each initial configuration ci, and also over all initial 
configurations ci that occur in the ensemble. 

Thus, a dynamic Monte Carlo simulation can be 
performed in the following fashion. Generate a con- 
figuration defined by some macroscopic parameters, for 
example, a specified fractional coverage and a spatial 
distribution corresponding to some specified initial 
temperature. Then make a list of all possible transi- 
tions and compute the average rate for a transition. A 
transition is then picked according to its probability, 
and the lattice configuration is updated. This process 
is reiterated until a sufficiently long sequence of con- 
figurations has been obtained. In this way, a trajedory 
in configuration space is generated. By repetition of 
the process many times, each time starting with a dif- 
ferent configuration specified by the same macroscopic 
parameters (temperature and fractional coverages, for 
example), an ensemble of trajectories is generated. 
Corresponding to each Monte Carlo step in this en- 
semble is a time increment which is calculated by taking 
the reciprocal of the average, over the ensemble, of the 
transition rate. Such an algorithm for a system ap- 
proaching equilibrium through adsorption and desorp- 
tion has been described in detail.I4 

(15) Bortz, A. B.; Kalos, M. H.; Lebowitz, J. L. J. Comput. Phys. 1976, 
17, 10-18. 
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From the above description of Monte Carlo algor- 
ithms, it is clear that the configuration of the lattice gaa 
evolves stochastically in a simulation. If we consider 
the probability density in configuration space, the re- 
sulting time evolution for the stochastic process is de- 
scribed by the master equation1i2 
fl(cf,t)/dt = Cu(ci,Cf)P(ci,t)/T -Cw(Cf,Ci)P(Cf,t)/T 

(1) 
where P(c,t) is the probability distribution of configu- 
ration c at time t. The transition probabilities u(q,cf), 
which are the input parameters in a Monte Carlo sim- 
ulation, are determined by the microscopic properties 
of the system being simulated. All processes which 
occur on a time scale much shorter than 7 are accounted 
for by these transition probabilities. For instance, in 
the case of surface diffusion, the vibrational motion 
resulting from the frustrated translation, parallel to the 
surface, of the molecule in the adsorption well deter- 
mines the rate of escape from one adsorption site to the 
next. Hence, the transition probabilities for the surface 
diffusion simulation must correctly account for these 
underlying microscopic dynamics. 

Since the particular stochastic process that results in 
the simulation is determined by the choice of the 
transition probabilities w(q,cf), it is important that this 
choice be made carefully. The transition probabilities 
w(ci,cf) must at least satisfy detailed balance, i.e., 

q q 

w(ci,cf)Peq(q) = w(ct,ci)Peq(cf) (2) 

This is necessary in order that the dynamics produce 
the correct equilibrium probability distribution Pq(c) 
in configuration space. This probability distribution 
is given by 

(3) 
where H is the Hamiltonian and 2 is the partition 
function. The requirement of detailed balance, how- 
ever, does not completely specify the transition prob- 
abilities. It can be seen from eq 2 that detailed balance 
can only specify, for each pair q and cf of confiiations, 
the ratio w(ci,cf)/w(cf,ci). If, for instance, we multiply 
each pair of transition probabilities w(q,cf) and w(cf,q) 
by a constant factor (which need not be the same for 
different transition pairs), we will obtain another system 
that has exactly the same equilibrium properties but 
different kinetics. One systematic way of doing this is 
by normalizing the transition probability w(ci,cf) by the 
sum w(q,cf) + w(cf,q) to obtain the transition probability 

(4) 

Similarly, we can define an ij(cf,q) for the reverse 
transition. Using these rescaled transition probabilities 
in a simulation will give the same equilibrium distri- 
bution of configurations as a simulation using the ori- 
ginal transition probabilities. However, the approach 
to equilibrium occurs at a different rate. Adsorption 
and desorption rate coefficients or diffusion rate coef- 
ficients obtained from simulations using 6(ci,cf) would 
be quite different from the corresponding quantities 
obtained from simulations using w(ci,cf). Indeed, it is 
not simply the case that equilibrium is reached at  a 
different rate. The two systems would proceed toward 
equilibrium along different ensembles of trajectories in 
configuration space.13 

P,(c) = 2-' exp (-H[c]/kBT) 

O(ci,cf) = u(q,cf)/[u(ci,cf) + u(cf,ci)I 
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E = O  
Figure 1. A schematic diagram of the model for the energy barrier 
for diffueion. The parameters ai, af, and Eb which appear in eqs 
5-7 are indicated explicitly. 

Applications 
Surface Diffusion. We now illustrate the ideas 

discussed above using the results of a previously re- 
p0rtedl3 simulation of surface diffusion. The simulation 
system consists of a square lattice gas in which the 
nearest-neighbor and next-nearest-neighbor repulsions 
are of equal strength, 4. Surface diffusion is simulated 
for two different dynamic models, i.e., using two dif- 
ferent sets of transition probabilities. 

In the first dynamic model, which we will refer to as 
the thermal excitation model, the energy barrier Eb(q,cf) 
for a particle to hop to a nearest-neighbor site is ob- 
tained by computing the intersection of two parabolic 
potential wells described by 

Ei = k$/2 + ai (5 )  

Ef = k({- A)'/2 + af (6) 

Here Ei and Ef are the potential wells of the initial and 
final states, respectively, and { is the surface diffusion 
coordinate, as may be seen in Figure 1. The bottom 
of the initial potential well is given by ai = 4Ni, where 
Ni is the total number of occupied sites that are nearest 
neighbor and next-nearest neighbor to the particle. 
Similarly, the bottom of the final potential well is 
computed by considering the neighborhood of the 
particle if it were in the final site. The lattice constant 
is A, and the force constant of the (harmonic) potential 
wells is k. The energy barrier E b  to hop is given by the 
difference in energy between the point of intersection 
of the two potential wells and the bottom of the initial 
potential well. The transition probabilities are given 
by 

We choose X = 3 A and 4 = 2 kcal/mol. If the mass 
of the particle is chosen to be 10 amu, then the frus- 
trated translational frequency parallel to the surface is 
equal to approximately 72 cm-'. These values are 
typical of a number of adatoms on transition metal 
surfaces. 

In the second dynamic model, the (Kawasaki) tran- 
sition probabilities are given by 
ok(q,cf) = exp (-6a/2kBT)/[exp (-6a/2kBT) + 

and 

ue(ci,cf) = exp [-Eb(Ci,cf)/kBn (7) 

exP (6a /2k~T)I  (8) 



256 Acc. Chem. Res., Vol. 25, No. 6, 1992 

-6 I I 

0 1 

0 

0 

0 1 2 3 4 5 6 

kBT 1 9 
Figure 3. The ratio D,/D, of the diffusion coefficients plotted 
in Figure 2. This clearly shows that the ratio deviatea from unity 
at low temperatures. 

argument shows that at  infinite temperature the dif- 
fusion barrier is 0. This is confirmed by the simulation 
results which show a decrease in the diffusion barrier 
toward 0 at  the higher temperatures when using these 
dynamics (cf. Figure 2). 

For the thermal excitation model, the slope of the 
corresponding curve in Figure 2 is conventionally in- 
terpreted as the energy barrier to surface diffusion. For 
Kawasaki dynamics the slope of the Arrhenius con- 
struction in Figure 2 can, at best, be taken as an ef- 
fective energy barrier. The interpretation of the slope 
as an energy barrier is not entirely satisfactory because, 
independent of the lattice-gas model, Kawasaki dy- 
namics wil l  always give a diffusion barrier which tends 
to 0 at  high temperatures. 

These results illustrate two points. First, the com- 
puted diffusion Coefficients are different for models with 
different transition probabilities, even though the 
equilibrium states are equivalent. Second, this differ- 
ence is not a trivial temperature-independent rescaling, 
because the temperature dependence of the diffusion 
coefficients is not the same. In order to emphasize this 
latter point, we can rescale the time in the simulations 
in an attempt to make the diffusion coefficients agree. 
Using eq 9, we can divide the time increment for each 
step in the second model by the appropriate A(ci,cf). 
The results of such a procedure are shown as crosses 
in Figure 2. The ratio of the diffusion coefficient D, 
obtained in this way to that obtained in the first model 
is plotted in Figure 3. The agreement between D, and 
De is good for temperatures that are high compared to 
$/kB. The agreement becomes progressively poorer as 
the temperature becomes progressively lower. This is 
easily understood as follows. At  high temperatures the 
factor A(q,cf) is weakly dependent on the configurations 
q and cf since the distribution of configurations is rather 
uniform. Therefore, all the transition probabilities 
we(ci,cf) are rescaled by approximately the same factor 
to get q(q,cf). This means that the relative probability 
of picking a transition is approximately the same for 
both dynamic models. At lower temperatures, however, 
A(ci,cf) becomes strongly dependent upon the configu- 
rations q and cp This results in different relative 
probabilities for picking a transition in the two dynamic 
models. Thus, in each dynamic model the system 
evolves along a different ensemble of trajectories in 
configuration space. In both cases the system evolves 
toward the same equilibrium state, but the paths taken 
in getting there are different. In the case in which there 
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are no lateral interactions, however, the two sets of 
transition probabilities would yield equivalent results. 

The thermal excitation model is appropriate for de- 
scribing systems in which the probability of escape from 
one adsorption well into another has the form v exp 
( -E/kBT),  where E is an energy barrier. For these 
systems the Kawasaki model is simply not appropriate. 
When the thermal excitation model is used, the po- 
tential wells must be prescribed in order to calculate 
the energy barrier. This difference, i.e., the presence 
of an energy barrier in the thermal excitation dynamics 
and the absence of one in Kawasaki dynamics, results 
in a rather fundamental difference between the two 
dynamics. 

In order to amplify this important point, consider a 
&function population distribution in configuration 
space with an initial configuration c,,. (This, of course, 
is the situation in any particular run of a Monte Carlo 
simulation.) Let the set of all configurations that can 
be reached from co after one transition be C,,. After 
time T ,  one attempt at  a transition has occurred, and 
the region of configuration space which can possibly be 
occupied is (c, + C,,). If we use Kawasaki dynamics, it 
can be seen from eq 8 that the population in the con- 
figurations (cg + C,) is now distributed according to the 
Boltzmann distribution. Of course, the system is not 
in thermal equilibrium because there are unpopulated 
configurations that are accessible only after more than 
one transition has occurred. On the other hand, if we 
use thermal excitation dynamics, the population in the 
configurations (cg + C,) becomes Boltzmann distributed 
only after many attempts at  transitions between these 
configurations have occurred. The number of attempts 
needed is expected to be proportional to exp (E/kBT), 
where E is the largest energy barrier for the transitions 
among the configurations (co + Co). 

We should also note that other forms of the transition 
probability o(q,cf) have been used previ~usly.~’~ In one 
of these proposed alternatives: the transitions are 
sampled according to Kawasaki dynamics, but the unit 
of time 7 is taken to be T, exp (E/kBT) ,  where T~ is a 
constant. In this case, E is the energy barrier, and T 

becomes temperature dependent rather than a constant. 
In a sense, this is similar to thermal excitation dynam- 
ics, because the population of the configuration in the 
set (c, + Co) becomes Boltzmann distributed after a 
time inversely proportional to the Boltzmann factor for 
an energy barrier. 

The Compensation Effect. An interesting phe- 
nomenon that Monte Carlo simulations have been used 
to investigate is the compensation effect seen in many 
surface chemical reactions. This effect, which involves 
a compensation between variations in the preexponen- 
tial factor and the activation energy of the reaction rate 
coefficient, has been observed for many systems in- 
volving both unimolecular and bimolecular reactions on 
solid surfaces. The activation energy is expected to vary 
with the fractional surface coverage because of lateral 
interactions between the adsorbed molecules. In com- 
pensating systems the apparent preexponential factor 
also varies with the fractional coverage such that as the 
activation energy increases, the preexponential factor 
also increases, resulting in a compensation in the ob- 
served rate. Although changes in the activation energy 
can be understood microscopically in terms of adsor- 
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bate-adsorbate interactions, the concomitant changes 
in the preexponential factor are poorly understood. A 
recent review17 correctly stated that current theories 
cannot account for the frequently very large (up to 11 
orders of magnitude18) range of variation of the preex- 
ponential factor. Changes in the surface phonon 
spectrum may play a role in the compensation effect, 
but the theories that take this into account have here- 
tofore dealt only with low fractional coverages.lSz1 Our 
recent workniB shows that the parametrization implicit 
in the Polanyi-Wigner form of the reaction rate coef- 
ficient, k, = k(O) exp (-E/kBT), can lead to compensatory 
behavior when the local configuration of the adsorbate 
around a pair of reacting molecules changes with tem- 
perature. We studied the case of a bimolecular reaction 
between two lattice gases which were chosen to model 
the oxidation of carbon monoxide on single-crystalline 
transition metal surfaces. 

This lattice-gas system can be described by the re- 
actions 

Az(g) + 2~ + 2A(S) 

B(g) + v + B(s) 

A(s) + B(s) =+ AB(g) + 2v 

where (g) denotes a gas-phase molecule, (s) denotes an 
adsorbed species, v denotes a vacant adsorption site, 
and 2v denotes a pair of nearest-neighbor vacant ad- 
sorption sites.22 We used a square lattice of adsorption 
sites to model the surface and assumed the occurrence 
of only nearest-neighbor interactions. 

In the model we set the adsorption and desorption 
of B to be much faster than both the surface diffusion 
of A and the bimolecular reaction. This was done in 
order to simulate the relatively facile adsorption-de- 
sorption equilibrium of carbon monoxide compared 
both to its oxidation and to the surface diffusion of 
chemisorbed oxygen atoms. Hence, at each step in the 
simulations, the surface configuration of B is allowed 
to relax fully. This was done by using a Langmuir-like 
adsorption isotherm to compute the probability of 
finding an adsorbed B molecule at  each vacant site on 
the surface. For a vacant site with j nearest-neighbor 
A’s, this probability is equal to 

(12) p ~ j  = [1 + CY eXp (-Edj/k~T)]-l  

where 

(Y = k6°’(2am~k~T)’/2/p~,,A (13) 

and 

Edj = Ed,, - jcAB - (4 - j)PB,OcBB (14) 

The partial pressure of B in the gas phase is given by 
pBS, cij are the nearest-neighbor interaction energies 

(17) Seebauer, E. G.; Kong, A. C. F.; Schmidt, L. D. Surf. Sci.  1988, 

(18) Engstrom, J. R.; Weinberg, W. H. Surf. Sci. 1988,201,145-170. 
(19) Carter, K. F. Surf. Sci. 1983, 125,499-514. 
(20) Armand, G.; Masri, P.; Dobrzynski, L. J. Vac. Sci. Technol. 1972, 

193,417-436. 
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(21) Hood, E.; Jedrzejek, C.; Freed, K. F.; Metiu, H. J. Chem. Phys. 

(22) Kang, H. C.; Jachimowski, T. A.; Weinberg, W. H. J. Chem. Phys. 

(23) Fichthorn, K. A.; Weinberg, W. H. Langmuir 1991,7,2539-2543. 

1984,81, 3277-3293. 
1990,93, 1418-1429. 
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between species i and j ,  A is the area of a unit cell which 
is taken to be cm2, and the rate coefficient for 
desorption of B is k d  = kL0’ exp (-Edj/k~T). 

The role of the Monte Carlo sampllng is to simulate 
the microscopic events of dissociative adsorption, sur- 
face diffusion, and reaction of A. The dissociative ad- 
sorption rate on a pair of nearest-neighbor sites i and 
j ,  which are unoccupied by A, is given by 

r&j) = (1 - PB, i ) ( l  - PBJ)PA2A/(2?rmA,kBT)”2 (15) 

where p~~ is the partial pressure of gas-phase Az and 
mA is the molecular mass of A2. The probabilities PBj 
and PBj account for the possible occupation of each of 
the sites i and j by a B molecule. 

The rate of hopping of a chemisorbed A atom from 
site i to a nearest-neighbor site j unoccupied by A is 
given by 

rh(ij) = exp [-Eh(ij)/kBq(1 - P B j )  (16) 

where vII is the frustrated translational frequency of an 
A adatom parallel to the surface and Eh(ij) is the en- 
ergy barrier to thermally activated diffusion. This 
barrier is obtained in the same manner as discussed 
earlier in connection with surface diffusion, i.e., the 
potential wells at sites i and j are modeled by two 
harmonic wells, and the top of the diffusion barrier is 
the intersection of these two wells (cf. Figure 1). 

Given that an A atom is adsorbed at  site i, the rate 
of reaction of this atom is given by 

rr(ij) = 2k1°) exp [-Er(ij)/kBnPBj (17) 

where the factor PBj accounts for the probability of 
finding a B in the neighboring site j ,  and k!” is the 
preexponential factor of the reaction rate coefficient. 
The activation energy E,(ij)  is computed via 
Er(ij) E r , 0  - nAAEAA - nBBEBB - (nABcAB + n B A d  

(18) 
Here, n u  and nBA are the numbers of nearest-neighbor 
A and B species, respectively, to the A atom in the 
reacting pair, and nBB and nm are the numbers of 
nearest-neighbor B and A species, respectively, to the 
B particle in the reacting pair. The E’S are the mag- 
nitudes of the corresponding interaction energies 
(positive if repulsive), and EBA = tAB. The activation 
energy of reaction of an isolated AB pair is given by ErP. 

All the parameters in the above expressions for the 
rates of diffusion, adsorption, and reaction of A and for 
the Langmuir isotherm describing the configuration of 
B are chosen such that the reaction between oxygen and 
carbon monoxide on platinum1* is simulated. The 
chosen values of the various parameters have been given 
previously.22,23 It is essential to note here only that the 
preexponential factors in the above expressions are 
constants, i.e., no variation with coverage or tempera- 
ture is built into the model. The results of these sim- 
ulations, in which the temperature ranged from 325 to 
500 K and the gas-phase partial pressure of B was 
maintained at lo* Torr, are shown in Figure 4. The 
activation energy and the preexponential factor of the 
reaction rate coefficient are plotted as a function of the 
gas-phase pressure of A2. There is clearly a large (7 
orders of magnitude) variation in the preexponential 
fador, and this variation compensates for the variation 
in the activation energy. 
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Figure 4. (a) The activation energy of the reaction rate coefficient 
as a function of the gas-phase pressure of A% The gas-phase 
pressure of B ie 10-6 Torr throughout, and the temperature ranged 
from 3% to 600 K. (b) The preexponential factor of the reaction 
rate coefficient as a function of the gas-phase presaure of A2, for 
the same set of simulations as in Figure 4a. 

Previously, we modeled a similar system,zz except 
that no diffusion of the adsorbed A was allowed, and 
no lateral interactions occurred between B particles. In 
that study a few different values for the interaction CAB 
between adsorbed A and B particles were used. The 
compensation effect was observed when the distribution 
of local configurations of an AB pair depended signif- 
icantly upon temperature. When this strong tempera- 
ture dependence was not observed, the compensatory 
trend was either absent or weak. More detailed results, 
in particular the change in the distribution of local 
configurations with temperature, can be found else- 
where.=B Initially, we studied systems which were not 
at steady state, and we computed only the initial re- 
action rate as a preadmrbed overlayer of A particles was 
exposed to B.zz However, we argued there that the 
observation of a compensation effect is not affected by 
the transient nature of the simulations. In particular, 
the fact that the coverage is not a constantz4 does not 
affect the conclusions presented there. This was con- 
f m e d  subsequentlf3 when steady-state systems were 
simulated. 

In all the systems that we have ~ i m u l a t e d , 2 ~ ~ ~ ~  the 
observed compensation effect can be related to the 
dependence on temperature and fractional coverage of 
the distribution of local configurations. Now we shall 
briefly summarize the framework within which the re- 
sults can be understood. This will also underscore the 

(24) Zhdanov, V. P. Surf. Sci. Rep. 1991,12, 184-242. 



Dynamic Monte Carlo Simulations 

usefulness of Monte Carlo simulations for situations in 
which the configuration of particles in the system (here 
the configuration of the adsorbed overlayer) varies in 
a nontrivial fashion. 

The usual analysis of bimolecular Langmuir-Hin- 
shelwood reactions assumes that the reaction rate is 
given by 

R = kr&& = k(O) exp (-E/kBT)OAdB (19) 

where the rate coefficient k, is assumed to be of the 
Polanyi-Wigner form with the possibility of a tem- 
perature- and coverage-dependent activation energy E 
and preexponential factor k(O). It is also possible to 
consider the reaction rate to be the sum over the dis- 
tribution OABi of reactant pairs whose local environment, 
through adsorbate interactions, dictates an activation 
energy Ei and a preexponential factor hio), Le., 

(20) 

In the simulation we set all the kio”s to be equal. A 
similar expression was suggested many years ago to 
account for compensation in terms of the intrinsic 
heterogeneity of a catalyst in the absence of adsorbate 
 interaction^.^^ By comparison of the above two ex- 
pressions, eqs 19 and 20, for the reaction rate, it can be 
seen that each of the two parameters E and k(O) in eq 
19 is a weighted average depending on all the micro- 
scopic k,(O)’s and Ei’s in eq 20. Hence, the variation in 
the distribution of reactant pairs, which accom- 
panies temperature or fractional coverage changes will 
vary the contribution of each hio) and each Ei toward 
k(O) and E. Clearly, temperature or coverage changes 
can result in variations in the apparent preexponential 
factor k(O) and the apparent activation energy E in eq 
19. 

A conventional way of presenting the compensation 
effect is the variation of and E with temperature 
at a constant coverage. If we consider eq 20, it can be 
seen that the total reaction rate is the average over all 
local configurations of the reaction rate klo) exp (-Ei/ 
kBT) for each type of local configuration, each one of 
which is weighted by its corresponding factor ems. The 

factors give the distribution of AB pairs in each 
type of local configuration. As the temperature is low- 
ered, while a constant coverage is maintained, the 
probability of finding AB pairs in energetically favor- 
able local configurations increases. Thus, BABi. for local 
configurations with high activation energy Ei increases 
at the expense of dm,i for local configurations with low 
activation energy Ei. Consequently, in an Arrhenius 
plot of the reaction rate R, the logarithm of R is a 
concave function of 1/T. Therefore, we conclude that 
a compensation effect (as opposed to an anticompen- 
sation effect) will generally be observed. 

It should be emphasized that although it is relatively 
simple to make qualitative arguments for the occurrence 
of compensatory trends, it is not an altogether trivial 

R = S9m,ikio) exp (-Ei/kBT) 
1 

(25) Constable, F. H. h o c .  R. SOC. London, A 1925,108, 355. 
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task to obtain quantitative support for thew arguments. 
Unless the variations in OAB,i (which is a nearest- 
neighbor correlation) with temperature and coverage 
are well approximated by mean-field theories, and can 
therefore be easily computed, it is necessary to use 
Monte Carlo sampling in order to compute 
Conclusions 

We have discussed the basis for using Monte Carlo 
simulations to study dynamic phenomena. The corre- 
spondence between a Monte Carlo step and an incre- 
ment in real time can be quantified using the theory 
of Poisson processes. We have shown that the transi- 
tion probabilities w(q,cf) describing the system play a 
central role in determining the real-time increment for 
each step in a simulation. In particular, the real-time 
increment corresponding to a step in a simulation is 
equal to the reciprocal of ((w(ci,ct)/~) ). Here the en- 
semble average ( (  ) )  is over all trajectories for each 
initial configuration and over a distribution of initial 
configurations consistent with some specified macro- 
scopic parameters. 

The appropriate choice of transition probabilities is 
important because it is possible to have systems, de- 
scribed by different sets of transition probabilities, 
which take different (ensemble averaged) paths toward 
equilibrium, even though the equilibrium distribution 
of configurations is the same. We illustrated by dis- 
cussing the use of dynamic Monte Carlo simulations to 
study the surface diffusion of a lattice gas. Two dy- 
namic models sharing the same equilibrium distribution 
of configurations but having different transition prob- 
abilities, w(ci,cf), were studied. A difference in the 
temperature dependence of the surface diffusion coef- 
ficient for these systems was observed. This difference 
became increasingly significant at lower temperatures 
because of the increasingly different ensembles of tra- 
jectories taken in evolving toward equilibrium. 

We also discussed the use of dynamic Monte Carlo 
simulations to study the Compensation effect in a 
Langmuir-Hinshelwood reaction. A lattice-gas system 
simulating the reaction between carbon monoxide and 
oxygen on transition metal surfaces was studied. The 
use of Monte Carlo simulations here was essential be- 
cause it allowed us to show that a possible origin of the 
compensation effect is in the variation, with tempera- 
ture and fractional surface coverage, of the adlayer 
configuration. Monte Carlo simulations make it pos- 
sible to generate the nontrivial variation of the adlayer 
configurations. This application demonstrates the 
usefulness of dynamic Monte Carlo simulations in 
providing microscopic insight for understanding some 
macroscopic features of complicated reaction systems. 
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